

NTSB National Transportation Safety Board

Reducing Risk
While
Improving
Productivity:

Key Lessons Learned

Presentation to:

Colorado Springs Utilities

Name: Christopher A. Hart

Date: May 2-3, 2012

The Contrast

- Conventional Wisdom:

Improvements that reduce risk usually also reduce productivity

- Lesson Learned from Proactive Aviation Safety Information Programs:

Risk can be reduced in a way that also results in immediate productivity improvements

Process Plus Fuel Creates A Win-Win

<u>Outline</u>

- The Context
- Importance of "System Think"
- Importance of Better Information
- Safety Benefits
- Productivity Benefits
- Aviation Successes and Failures
- Roles of Leadership and Regulator

NTSB Basics

- Independent federal agency, investigate transportation accidents, all modes
 - Political independence
 - Functional independence
- Findings, recommendations based upon evidence rather than self-interest or politics
- Determine probable cause(s) and make recommendations to prevent recurrences
- SINGLE FOCUS IS SAFETY
- Primary product: Safety recommendations
 - Favorable response > 80%

The Context: Increasing Complexity

More System

Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

The Result:

Front-Line Staff Who Are

- Highly Trained
 - Competent
 - Experienced,
- -Trying to Do the Right Thing, and
 - Proud of Doing It Well

... Yet They Still Commit

Inadvertent Human Errors

The Solution – System Think

An awareness of how a change in one subsystem of a complex system may affect other subsystems within that system

When Things Go Wrong

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

SO

You weren't careful enough

SO

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's also explore why the system allowed, or failed to accommodate, your mistake

and

You should be PUNISHED! Let's IMPROVE THE SYSTEM!

Fix the Person or the System?

Is the Person Clumsy?

Or Is the Problem . . .

The Step???

Enhance Understanding of Person/System Interactions By:

- Collecting,
- Analyzing, and
 - Sharing

Information

Objectives:

Make the System

(a) Less Error Prone and

(b) More Error Tolerant

The Health Care Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

Institute of Medicine, Committee on Quality of Health Care in America, 1999

Current System Data Flow

Heinrich Pyramid

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

Legal Concerns That Discourage Collection, Analysis, and Sharing

- Public Disclosure
- Job Sanctions and/or Enforcement
- Criminal Sanctions
- Civil Litigation

Typical "Cultural" Barrier

"Safety First"

Middle Management

"Production First"

Front-Line Employees

"Please the Boss First...

THEN Consider Safety?"

Next Challenge

Improved Analytical Tools

As we begin to get over the first hurdle, we must start working on the next one . . .

Information Overload

"EUREKA! MORE INFORMATION!"

21

From Data to Information

Tools and processes to convert large quantities of data into useful information

Data Sources

Info from front line staff and other sources

Smart Decisions

- Identify issues
- PRIORITIZE!!!
- Develop solutions
- Evaluate interventions

Aviation Success Story

65% Decrease in Fatal Accident Rate, 1997 - 2007

largely because of

System Think

fueled by

Proactive Safety
Information Programs

P.S. Aviation was already considered *VERY SAFE* in 1997!!

Aviation "System Think" Success

- Engage <u>All</u> Participants In Identifying Problems and Developing and Evaluating Remedies
- Airlines
- Manufacturers
 - With the systemwide effort
 - With their own end users
- Air Traffic Organizations
- Labor

May 2-3, 2012

- Pilots
- Mechanics
- Air traffic controllers
- Regulator(s) [Query: Investigator(s)?]

Collaboration: A Major Paradigm Shift

- Old: Regulator identifies a problem and proposes solutions
 - Industry skeptical of regulator's understanding of the problem
 - Industry resists regulator's solutions and/or implements them begrudgingly
- New: Collaborative "System Think"
 - Industry involved in identifying problem
 - Industry has "ownership interest" re solution because everyone had input, everyone's interests considered and better understood by all
 - Prompt and willing implementation (and tweaking)
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Differing and sometimes competing interests
 - Labor-management issues between participants
 - Participants are potential adversaries
- Regulator probably not welcome
- Not a democracy
 - Regulator must regulate
- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System

Manufacturer "System Think" Success

Aircraft Manufacturers are Increasingly Seeking Input, Throughout the Design Process, From

- Pilots

(*User* Friendly)

- Mechanics

(*Maintenance* Friendly)

- Air Traffic Services

(System Friendly)

Moral of the Story

- "System Think" can be successful at any macro/micro level, including
 - Entire industry
 - Company (some or all)
 - Type of activity
 - Facility
 - Team

Failure: Inadequate "System Think"

- 1995 Cali, Colombia
- Risk Factors
 - Night
 - Airport in Deep Valley
 - No Ground Radar
 - Airborne Terrain Alerting
 Limited to "Look-Down"
 - Last Minute Change in Approach
 - More rapid descent (throttles idle, spoilers)
 - Hurried reprogramming
- Navigation Radio Ambiguity
- Spoilers Do Not Retract With Power

Recommended Remedies Include:

Operational

Caution Re Last Minute Changes to the Approach

Aircraft/Avionics

- Enhanced Ground Proximity Warning System
- Spoilers That Retract With Max Power
- Require Confirmation of Non-Obvious Changes
- Unused or Passed Waypoints Remain In View

Infrastructure

- Three-Letter Navigational Radio Identifiers
- Ground-Based Radar
- Improved Reporting of, and Acting Upon, Safety Issues

Note: All but one of these eight remedies address system issues

Major Benefit: **pavings**

*Significantly More

Than Savings From Mishaps Prevented

Immediate Benefits

Long-Term

Benefits

Not Only Improved Safety, But Improved Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
- Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes off line for VERY EXPENSIVE (!!) disassembly, inspection, repair, and reassembly

But Then . . .

Why Are We So Jaded in The Belief That Improving Safety Will Probably Hurt The Bottom Line??

Costly Result\$ Of Safety Improvements Poorly Done

Safety **Poorly** Done

Safety Well Done

- 1. Punish/re-train operator
- Poor workforce morale
- Poor labor-management relations

- Look beyond operator, also consider system issues
- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

Apply "System Think,"

and solve problems

with workers, to identify

- 2. Management decides remedies unilaterally
- Problem may not be fixed
- Remedy may not be most effective, may generate other problems
- Remedy may not be most cost effective, may reduce productivity
- Reluctance to develop/implement remedies due to past remedy failures
- Remedies less likely to address multiple problems
 - 3. Remedies based upon instinct, gut feeling
- Same costly results as No. 2, above

Remedies based upon evidence (including info from front-line workers)

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done Safety Well Done

4. Implementation is last step

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

Query: Is Safety Good Business?

- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs

The Role of Leadership

- Demonstrate Safety Commitment . . .
- But Acknowledge That Mistakes Will Happen
 - Include "Us" (e.g., System) Issues,
 - Not Just "You" (e.g., Training) Issues
 - Make Safety a Middle Management Metric
 - Engage Labor Early
 - Include the **System** --
- Manufacturers, Operators, Regulator(s), and Others
 - Encourage and Facilitate Reporting
 - Provide Feedback
 - Provide Adequate Resources
 - Follow Through With Action

How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
 - Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same
 - Recognize that compliance is very important, but the mission is reducing systemic risk

San Bruno: Separated Pipe Segment

Cross Section of Pipe Welds

Stresses at DSAW Weld

Stresses at Incomplete Weld

Probable Cause

- Inadequate QA/QC during construction
- Inadequate integrity management
- Contributing to accident:
 - Grandfathering re pressure testing
 - Inadequate oversight by regulators
- Contributing to severity:
 - Lack of automatic shutoff or remote control valves
 - Inadequate emergency response

Major Recommendation Areas:

- Delete grandfather clause and require hydrostatic testing at 1.25 MAOP for older pipelines to be declared stable
- Revise integrity management inspection protocols to minimize threat of pipeline ruptures
- Require installation of automatic shutoff or remotecontrol shutoff valves in high consequence areas
- Audits of safety oversight process
- Provide system-specific information about pipeline systems to emergency response agencies

Thank You!!!

Questions?